Abstract

The study of interlayers is important to enhance the performance of inverted perovskite solar cells (PSCs) because interlayers in PSCs align energy levels and improve charge transport. However, previous research into applying interlayers for PSCs has focused only on wet-coated methods, such as spin coating, to form the interlayer. Here, we fabricated planar-type PSCs deposited with a 6,6-phenyl-C71 butyric acid methyl ester (PC71BM) layer onto a CH3NH3PbI3 (MAPbI3) layer by stamping transfer through a relatively dry process condition. We demonstrated the effects of a stamping-transferred PC71BM layer using polyurethane acrylate (PUA), the surface energy of which was modified by 2-hydroxyethyl methacrylate (HEMA) to increase the transfer reproducibility. In PSCs with a stamping-transferred PC71BM layer, we observed an enhanced JSC and a comparable power conversion efficiency (PCE), which were caused by an enhanced coverage of the electron transport layer onto the MAPbI3 layer with preserved crystallinity, which occurs owing to improved electron mobility and exciton dissociation. The optimized device PCE through the dry-transferred PC71BM exhibited a JSC, fill factor, and PCE of 21.65 mA/cm2, 76.0%, and 15.46%, respectively. Moreover, morphological analysis and electrical measurements confirmed the improved durability of dry-stamping-transferred PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.