Abstract
In the present work, dry sliding wear behaviour of hybrid aluminum metal matrix composites is carried out. A mixture of silicon carbide and boron carbide is used in equal fraction as reinforcement with base material AA6082-T6 to prepare AA6082-T6/SiC/B4C hybrid metal matrix composites using stir casting technique. The weight percentage of silicon carbide and boron carbide mixture taken to prepare hybrid composites is 5, 10, 15 and 20. The wear behaviour of Al-SiC-B4C composites is investigated using a pin-on-disc apparatus at room temperature, and optimization of process parameters is done using response surface methodology. The weight percentage of reinforcement, sliding speed, load and sliding distance are selected as process parameters with five levels of each. Analysis of variance shows that wear increases with increase of load or sliding distance and decreases with an increase in reinforcement or sliding speed. The experimental results revealed that the wear of Al-SiC-B4C hybrid composites has been influenced most by the sliding distance and least by weight percentage of reinforcement. The interaction between load–sliding speed is the only significant two-factor interaction in the present model which increases wear rate in fabricated hybrid composites. Further, the experimental results obtained are verified by conducting confirmation tests, and the errors found are within 3 to 7%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.