Abstract
Methane dry reforming (DRM) holds promise as a pathway for converting methane into valuable synthesis gas (syngas) and high-value chemicals. In this study, we investigate the crystallographic plane interactions between nickel oxide (NiO) and a modified ceria-zirconia-praseodymium oxide support (CeZrPrOx) to elucidate their influence on catalytic activity in methane dry reforming. X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) techniques were employed to characterize the catalyst. Our findings reveal that specific crystallographic planes significantly impact the catalytic performance of NiO/CeZrPrOx catalyst. The (111), (110), and (100) facets of the support material are examined for their interactions with NiO. We observe that the (110) plane of the support exhibits strong interaction with NiO, leading to enhanced catalytic activity. This interaction facilitates superior anchoring of Ni nanoparticles, lowering sintering and promoting a strong metal-support interaction effect (SMSI). Additionally, our analysis suggests that the (110) interface is particularly favorable for methane dry reforming. Overall, this study highlights the importance of crystallographic plane interactions in NiO/CeZrPrOx catalysts and offers valuable insights for optimizing catalyst design for methane conversion processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have