Abstract

Co-loaded isoniazid and pyrazinamide chitosan nanoparticles were formulated using the ionic gelation method. The formulations were adjusted to five mass ratios of tripolyphosphate (TPP) and chitosan at three TPP concentrations. Particle size, polydispersity index, zeta potential, and encapsulation efficiency were used to evaluate all formulations. The results revealed that the ratio of TPP to chitosan had the highest impact in generating chitosan nanoparticles. The selected nanoparticle formulations were freeze-dried, and the obtained dry powders were characterized using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and Fourier-transform infrared spectroscopy to confirm the interaction of loaded drug and formulation excipients. The aerosolized performance of dry powders was also evaluated using the Andersen cascade impactor. A mass median aerodynamic diameter of 3.3–3.5 µm, % fine particle fraction of 30–44%, and 92–95% emitted dose were obtained from all formulations. The dry powder formulations were not toxic to the respiratory tract cell lines. Furthermore, they did not provoke alveolar macrophages into producing inflammatory cytokines or nitric oxides, indicating that the formulations are safe and could potentially be used to deliver to respiratory tract for tuberculosis treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.