Abstract
In this work we apply dry glass reference perturbation theory (DGRPT) within the context of fully mutualized diffusion theory to predict the temperature and pressure dependent separations of complex liquid mixtures using SBAD-1 glassy polymer membranes. We demonstrate that the approach allows for the prediction of the membrane-based separation of complex liquid mixtures over a wide range of temperature and pressure, using only single-component vapor sorption isotherms measured at 25 °C to parameterize the model. The model was then applied to predict the membrane separation of a light shale crude using a structure oriented lumping (SOL) based compositional model of petroleum. It was shown that when DGRPT is applied based on SOL compositions, the combined model allows for the accurate prediction of separation performance based on the trend of both molecular weight and molecular class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.