Abstract

AbstractAnaerobic digestion at high solid concentrations (dry anaerobic digestion) is an attractive method for the stabilization of solid organic wastes. A new concept for dry anaerobic batch digestion (BIOCEL) of the organic fraction of municipal solid waste is presented. The start up of a BIOCEL reactor was studied with several methods of process set up and operation. Dry anaerobic digestion of the pure undiluted organic fraction obtained from a shredding/separation process was not accelerated by partial spatial separation of substrate and methanogenic inoculum (granular sludge) or leachate recycle, or both. With these three methods after 30 days the high organic acids concentration and low pH in the reactor indicated a sour reactor, unable to establish significant methane production.When the organic fraction was digested in combination with compost addition (40% (w/w) of the initial solids) and leachate recycle, the stabilization rate increased significantly. Leachate recycling in combination with partial spatial separation of the substrate/compost mixture and the inoculum showed the shortest lag phase in the methane production and the shortest digestion time. When the digested residue of a completed digestion was applied as the methanogenic inoculum (40% (w/w) of the initial total solids) the digestion time was slightly shorter. It is concluded that dilution with compost had a positive effect on the start up of the dry anaerobic digestion and compensated for a suboptimal amount of initial methanogenic biomass. During the start up of dry anaerobic batch digestion of municipal solid waste the rapid recovery of methane formation from an initial overloading was observed and was found to be the result of a population shift in the methanogenic biomass and the existence of zones in the reactor with more optimal conditions (higher p H, lower organic acids concentration). The observed digestion time was 36 days. Recommendations are given to shorten the period needed, for complete digestion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.