Abstract

BackgroundThe epigenome plays a key role in cancer heterogeneity and drug resistance. Hence, a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. Hence, there is a need for a systematic methodology to unravel the mechanisms behind epigenetic sensitization.ResultsWe have developed a high-throughput protocol to screen non-simultaneous drug combinations, and used it to investigate the reprogramming potential of epigenetic inhibitors. We demonstrated the effectiveness of our protocol by screening 60 epigenetic compounds on diffuse large B-cell lymphoma (DLBCL) cells. We identified several histone deacetylase (HDAC) and histone methyltransferase (HMT) inhibitors that acted synergistically with doxorubicin and rituximab. These two classes of epigenetic inhibitors achieved sensitization by disrupting DNA repair, cell cycle, and apoptotic signaling. The data used to perform these analyses are easily browsable through our Results Explorer. Additionally, we showed that these inhibitors achieve sensitization at lower doses than those required to induce cytotoxicity.ConclusionsOur drug screening approach provides a systematic framework to test non-simultaneous drug combinations. This methodology identified HDAC and HMT inhibitors as successful sensitizing compounds in treatment-resistant DLBCL. Further investigation into the mechanisms behind successful epigenetic sensitization highlighted DNA repair, cell cycle, and apoptosis as the most dysregulated pathways. Altogether, our method adds supporting evidence in the use of epigenetic inhibitors as sensitizing agents in clinical settings.

Highlights

  • The epigenome plays a key role in cancer heterogeneity and drug resistance

  • We created an inhibitor collection to test all main classes of epigenetic enzymes, comprising DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone acetyltransferases (HATs), histone demethylases (HDMs), histone deacetylases (HDACs), and bromodomains (BRDs)

  • Given that diffuse large B-cell lymphoma (DLBCL) is the most common aggressive lymphoid cancer [22] and that patients who are not cured with R-CHOP have dismal prognosis, novel strategies to overcome R-CHOP resistance are urgently needed

Read more

Summary

Introduction

The epigenome plays a key role in cancer heterogeneity and drug resistance. a number of epigenetic inhibitors have been developed and tested in cancers. The major focus of most studies so far has been on the cytotoxic effect of these compounds, and only few have investigated the ability to revert the resistant phenotype in cancer cells. We systematically assessed the ability of epigenetic inhibitors to overcome treatment resistance in diffuse large B-cell lymphoma (DLBCL). The standard of care therapy given to previously untreated DLBCL patients of all ages and subtypes is the immunochemotherapy called RCHOP [10]. This combination consists of rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone and cures approximately 60% of the patients [10]. Given that DLBCL is the most common aggressive lymphoid cancer [22] and that patients who are not cured with R-CHOP have dismal prognosis, novel strategies to overcome R-CHOP resistance are urgently needed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.