Abstract
Aberrant fucosylation is the hallmark of malignant cell transformation, leading to many cellular events, such as uncontrolled cell proliferation, angiogenesis, tumor cell invasion, and metastasis. This increased fucosylation is caused due to the over-expression of fucosyltransferases (FUTs) that catalyzes the transfer of the fucose (Fuc) residue from GDP-fucose (donor substrate) to various oligosaccharides, glycoproteins, and glycolipids (acceptor substrates). Hence, fucosyltransferases (FUTs) are considered as validated target for the drug discovery against on cancers. In the current study, a drug repurposing approach was deployed to identify new hits against fucosyltransferase 2 (FUT2), using computational and biophysical techniques. A library of 500 US-FDA approved drugs were screened in-silico against fucosyltransferase 2 (FUT2) donor and acceptor sites. Five drugs were predicted as hits, based on their significant docking scores (-5.8 to -8.2), and binding energies (-43 to -51.19 Kcal/mol). Furthermore, STD-NMR highlighted the epitope of these drugs in the binding site of fucosyltransferase 2 (FUT2). Simulation studies provided insights about the binding site of these drugs, and 4 of them, acarbose, ascorbic acid, ibuprofen, and enalaprilat dihydrate, were found as significant binders at the donor binding site of fucosyltransferase 2 (FUT2). Hence, the current study reports the repurposed drugs as potential hits against fucosyltransferase 2 (FUT2). These may be further studied through in-vitro and in-vivo inhibitory and mechanistic studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.