Abstract

To treat skeletal conditions such as bone infections, osteoporotic fractures, and osteosarcoma, it would be ideal to introduce drugs directly to the affected site. Localized drug delivery from the bone implants is a promising alternative to systemic drug administration. In this study we investigated electrochemically nanoengineered Ti wire implants with titania nanotubes (TNTs), as minimally invasive drug-releasing implants for the delivery of drugs directly into the bone tissue. Since trabecular bone in vivo contains a highly interconnected bone marrow, we sought to determine the influence of marrow on drug release and diffusion. Electrochemical anodization of Ti wires (length 10 mm) was performed to create an oxide layer with TNTs on the surface, followed by loading with a fluorescent model drug, Rhodamine B (RhB). Cores of bovine trabecular bone were generated from the sternum of a young steer, and were processed to have an intact bone marrow, or the marrow was removed. RhB-loaded TNTs/Ti wires were inserted into the bone cores, which were then cultured ex vivo using the ZetOS™ bioreactor system to maintain bone viability. Release and diffusion of RhB inside the bone was monitored using fluorescence imaging and different patterns of drug transport in the presence or absence of marrow were observed. Scanning electron microscopy of the implants after retrieval from bone cores confirmed survival of the TNTs structures. Histological investigation showed the presence of bone cells adherent on the implants. This study shows a potential of Ti drug-releasing implants based on TNTs technology towards localized bone therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 714-725, 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.