Abstract
Great efforts have been made over the years to identify novel drug pairs with synergistic effects. Although numerous computational approaches have been proposed to analyze diverse types of biological big data, the pharmacogenomic profiles, presumably the most direct proxy of drug effects, have been rarely used due to the data sparsity problem. In this study, we developed a composite deep-learning-based model that predicts the drug synergy effect utilizing pharmacogenomic profiles as well as molecular properties. Graph convolutional network (GCN) was used to represent and integrate the chemical structure, genetic interactions, drug-target information, and gene expression profiles of cell lines. Insufficient amount of pharmacogenomic data, i.e., drug-induced expression profiles from the LINCS project, was resolved by augmenting the data with the predicted profiles. Our method learned and predicted the Loewe synergy score in the DrugComb database and achieved a better or comparable performance compared to other published methods in a benchmark test. We also investigated contribution of various input features, which highlighted the value of basal gene expression and pharmacogenomic profiles of each cell line. Importantly, DRSPRING (DRug Synergy PRediction by INtegrated GCN) can be applied to any drug pairs and any cell lines, greatly expanding its applicability compared to previous methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.