Abstract

Drug synergy is a crucial component in drug reuse since it solves the problem of sluggish drug development and the absence of corresponding drugs for several diseases. Predicting drug synergistic relationships can screen drug combinations in advance and reduce the waste of laboratory resources. In this research, we proposed a model that utilizes graph autoencoder and convolutional neural networks to predict drug synergy (GAECDS). Our methods include a graph convolutional neural network as an encoder to encode drug features and use a matrix factorization method as a decoder. Multilayer perceptron (MLP) was applied to process cell line features and combine them with drug features. Furthermore, the latent vectors generated during the encoding process are being used to predict drug synergistic scores using a convolutional neural network. By measuring prediction performance using AUC, AUPR, and F1 score, GAECDS superior to other state-of-the-art models. In addition, four pairs of the predicted top 10 drug combinations were found to work well enough for evaluation. The case study shows that the GAECDS approach is useful for identifying potential drug synergy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.