Abstract

A greenhouse experiment was carried out aiming to evaluate the response to drought stress of cowpea nodule enzymatic activities during different plant developmental stages leading to biological N2 fixation. Stress was applied by controlling soil’s water-potential through a porous cup. Cowpea plants cv IPA 205 were grown in pots with yellow latosol soil under three different matric potential (ψm) treatments. Even with high evaporative demand and limited soil water availability, cowpea could not induce an extremely low leaf water potential (ψw). Sap ureides concentration in cowpea declined during the drought stress period. There was a decline in enzyme activity in the metabolic pathways concerned with N2 fixation: NADH-dependent glutamate synthase (EC 1.4.1.14), glutamine synthetase (EC 6.3.1.2) and phosphoenolpyruvate carboxylase (EC 4.1.1.31). In contrast, an increase in glutamate dehydrogenase (EC 1.4.1.4) was observed as the ψm declined. Metabolism associated with N2 assimilation was impaired every time that the ψw was reduced below −0.73 MPa as had happened in the stressed treatments. The stress applied by the porous cup was gradual and the plant recovered its turgor, avoiding permanent deleterious alterations in the cellular metabolism, even from a limited cowpea-growth ψm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.