Abstract

Abstract In this study a new remote sensing drought index called Difference Drought Index (DDI) was introduced. DDI was calculated from the Terra satellite’s MODIS sensor surface reflectance data using visible red, near-infrared and short-wave-infrared spectral bands. To characterize the biophysical state of vegetation, vegetation and water indices were used from which drought indices can be derived. The following spectral indices were examined: Difference Vegetation Index (DVI), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Difference Water Index (DWI), Normalized Difference Water Index (NDWI), Difference Drought Index (DDI) and Normalized Difference Drought Index (NDDI). Regression analysis with the Pálfai Drought Index (PaDi) and average annual yield of different crops has proven that the Difference Drought Index is applicable in quantifying drought intensity. However, after comparison with reference data NDWI performed better than the other indices examined in this study. It was also confirmed that the water indices are more sensitive to changes in drought conditions than the vegetation ones. In the future we are planning to monitor drought during growing season using high temporal resolution MODIS data products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.