Abstract

Soil ecosystems are under considerable pressure due to anthropogenic factors, including microplastics (MPs) pollution and drought. However, little is known about the interactive effects of MPs and drought on soil organisms, especially soil micro-food web. We conducted a microcosm experiment with MPs pollution (including two types and two sizes of MPs) and drought to investigate their interaction effects on soil microbial, protist, and nematode communities in soil micro-food web. We found that MPs significantly decreased the complexity and stability of soil micro-food web, with greater negative effects of biodegradable and smaller-sized MPs than conventional and larger-sized MPs. Drought had negative effects on soil micro-food web in the non-MPs pollution soils while increasing the complexity and stability of soil micro-food web in the MPs pollution soils. Drought increased the proportion of negative correlations between bacteria and fungi in the biodegradable MPs soils while decreasing the proportion of negative correlations between protists and nematodes in the smaller-sized MPs soils. Our study reveals that drought may alleviate the negative effects of MPs on soil micro-food web by reducing competition among lower trophic levels in the biodegradable MPs pollution soils while reducing competition among higher trophic levels in the smaller-sized MPs pollution soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call