Abstract

Meiosis is characterized by two chromosome segregation rounds (meiosis I and II), which follow a single round of DNA replication, resulting in haploid genome formation. Chromosome reduction occurs at meiosis I. It relies on key structures, such as chiasmata, which are formed by repair of double-strand breaks (DSBs) between the homologous chromatids. In turn, to allow for segregation of homologs, chiasmata rely on the maintenance of sister chromatid cohesion. In most species, chiasma formation requires the prior synapsis of homologous chromosome axes, which is mediated by the synaptonemal complex, a tripartite proteinaceous structure specific to prophase I of meiosis. Yemanuclein (Yem) is a maternal factor that is crucial for sexual reproduction. It is required in the zygote for chromatin assembly of the male pronucleus, where it acts as a histone H3.3 chaperone in complex with Hira. We report here that Yem associates with the synaptonemal complex and the cohesin complex. A genetic interaction between yem(1) (V478E) and the Spo11 homolog mei-W68, modified a yem(1) dominant effect on crossover distribution, suggesting that Yem has an early role in meiotic recombination. This is further supported by the impact of yem mutations on DSB kinetics. A Hira mutation gave a similar effect, presumably through disruption of Hira-Yem complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.