Abstract

The target-of-rapamycin pathway couples nutrient availability with tissue and organismal growth in metazoans. The key effectors underlying this growth are, however, unclear. Here we show that Maf1, a repressor of RNA polymerase III-dependent tRNA transcription, is an important mediator of nutrient-dependent growth in Drosophila. We find nutrients promote tRNA synthesis during larval development by inhibiting Maf1. Genetic inhibition of Maf1 accelerates development and increases body size. These phenotypes are due to a non-cell-autonomous effect of Maf1 inhibition in the fat body, the main larval endocrine organ. Inhibiting Maf1 in the fat body increases growth by promoting the expression of brain-derived insulin-like peptides and consequently enhanced systemic insulin signaling. Remarkably, the effects of Maf1 inhibition are reproduced in flies carrying one extra copy of the initiator methionine tRNA, tRNA(i)(Met). These findings suggest the stimulation of tRNA(i)(Met) synthesis via inhibition of dMaf1 is limiting for nutrition-dependent growth during development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call