Abstract

Shifts in global climate conditions have heightened our need to understand the dynamics and pace of adaptation in natural populations. In order to anticipate the population-level response to rapidly changing environmental conditions, we need to understand whether trait evolution is predictable over short timescales, and whether the genetic basis of adaptation is shared or distinct across multiple timescales. Here, we explored parallelism in the adaptive response of a complex phenotype, D. melanogaster pigmentation, to shared conditions that varied over multiple spatiotemporal scales. Our results demonstrate that while phenotypic adaptation proceeds as a predictable response to environmental gradients, even over short timescales, the genetic basis of the adaptive response is variable and nuanced across spatial and temporal contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.