Abstract
Type 2 diabetes (T2D) is the most common metabolic disorder. The undesirable effects of synthetic drugs demand a search for safe antidiabetic agents. This study aimed to assess the antidiabetic activity of different fractions of Atriplex halimus (petroleum ether 60-80, methylene chloride, ethyl acetate, and n-butanol) using Drosophila melanogaster larvae. Titers of total glucose and trehalose, as well as larval weight, were measured and compared with those of control and diabetic larvae. The expression of Drosophila insulin-like peptides (DILP2 and DILP3) and adipokinetic hormone (AKH) was evaluated. The results revealed a significant increase in total glucose, trehalose, and a decrease in body weight in the larvae fed a high-sugar diet compared with those in the control. When larvae fed diets containing the tested fractions, the total glucose and trehalose decreased to the control level, and the body weight increased. DILP2, DILP3, and AKH exhibited significant decreases upon treatment with A. halimus ethyl acetate. Metabolomic profiling of the ethyl acetate fraction of A. halimus revealed the presence of flavonoids and flavonoid glycosides. After docking screening to predict the most powerful moiety, we discovered that flavonoid glycosides (especially eriodictyol-7-O-neohesperidoside) have a greater affinity for the pocket than the other moieties. The results indicated the therapeutic activity of the A. halimus ethyl acetate fraction against induced T2D in Drosophila larvae. The antidiabetic activity may be attributed to flavonoids, which are the main components of the A. halimus ethyl acetate fraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of experimental zoology. Part A, Ecological and integrative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.