Abstract

Flexible control of droplet transportation is crucial in various applications but is constrained by liquid-solid friction. The development of biomimetic lubricant-impregnated slippery surfaces provides a new solution for flexible manipulation of droplet transportation. Herein, a light strategy is reported for flexibly controlling droplet transportation on photosensitive lubricant-impregnated slippery surfaces. Owing to the localized heating effect of a focused laser beam via photothermal conversion, the resultant thermal Marangoni flow and horizontal component of the surface tension associated with the asymmetric wetting ridges are together responsible for actuating droplet transportation. It is found that the asymmetry of the wetting ridge is dominated by the thickness of the infused oil layer, which directly affects the droplet transportation. The feasibility of this light strategy is also demonstrated by uphill movement, droplet coalescence, and chemical reaction. This study provides a new design for potential applications in open droplet microfluidics, analytical chemistry, diagnosis, etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.