Abstract
Previous studies of the authors were focused on the vertical movement of the jet print when the printed head was stationary. In this work, the following study was presented, in which the movement of droplets is achieved using a moving horizontal print head. The printed head moves at various velocities, which affects the time of printing and deposition accuracy. This study provides a 3D numerical model with a complete turnover/interchange of the droplet shape at different time steps during the formation and movement process. By considering the dynamics of a droplet surrounded by air, we modeled them using the two-phase flow coupling and level set function from the computational fluid dynamics module by COMSOL Multiphysics. The trajectory shifts of the inkjet droplet are considered from its ejection to its impact on the surface at each time step. The conclusions summarize all the factors responsible for the trajectory shift of the droplet during vertical fall.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have