Abstract

We investigate jumping of sessile droplets from a solid surface in ambient oil using modulated electrowetting actuation. We focus on the case in which the electrowetting effect is activated to cause droplet spreading and then deactivated exactly at the moment the droplet reaches its maximum deformation. By systematically varying the control parameters such as the droplet radius, liquid viscosity and applied voltage, we provide detailed characterisation of the resulting behaviours including a comprehensive phase diagram separating detachment from non-detachment behaviours, as well as how the detach velocity and detach time, i.e. duration leading to detachment, depend on the control parameters. We then construct a theoretical model predicting the detachment condition using energy conservation principles. We finally validate our theoretical analysis by experimental data obtained in the explored ranges of the control parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call