Abstract

Doubly re-entrant pillars have been demonstrated to possess superior static and dynamic liquid repellency against highly wettable liquids compared to straight or re-entrant pillars. Nevertheless, there has been little insight into how the key structural parameters of doubly re-entrant pillars influence the hydrodynamics of impacting droplets. In this work, we carried out numerical simulations and experimental studies to portray the fundamental physical phenomena that can explain the alteration of the surface wettability from adjusting the design parameters of the doubly re-entrant pillars. On the one hand, three-dimensional multiphase flow simulations of droplet impact were conducted to probe the predominance of the overhang structure in dynamic liquid repellency. On the other hand, the numerical results of droplet impact behaviours are agreed by the experimental results for different pitch sizes and contact angles. Furthermore, the dimensions of the doubly re-entrant pillars, including the height, diameter, overhang length and overhang thickness, were altered to establish their effect on droplet repellency. These findings present the opportunity for manipulations of droplet behaviours by means of improving the critical dimensional parameters of doubly re-entrant structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.