Abstract

Abstract. Among the variety of particle types present in the atmosphere, black carbon (BC), emitted by combustion processes, is uniquely associated with harmful effects to the human body and substantial radiative forcing of the Earth. Pure BC is known to be non-hygroscopic, but its ability to acquire a coating of hygroscopic organic and inorganic material leads to increased diameter and hygroscopicity, facilitating droplet activation. This affects BC radiative forcing through aerosol–cloud interactions (ACIs) and BC life cycle. To gain insights into these processes, we performed a field campaign in winter 2015–2016 in a residential area of Zurich which aimed at establishing relations between the size and mixing state of BC particles and their activation to form droplets in fog. This was achieved by operating a CCN counter (CCNC), a scanning mobility particle sizer (SMPS), a single-particle soot photometer (SP2) and an aerosol chemical speciation monitor (ACSM) behind a combination of a total- and an interstitial-aerosol inlet. Our results indicate that in the morning hours of weekdays, the enhanced traffic emissions caused peaks in the number fraction of externally mixed BC particles, which do not act as CCN within the CCNC. The very low effective peak supersaturations (SSpeak) occurring in fog (between approximately 0.03 % and 0.06 % during this campaign) restrict droplet activation to a minor fraction of the aerosol burden (around 0.5 % to 1 % of total particle number concentration between 20 and 593 nm) leading to very selective criteria on diameter and chemical composition. We show that bare BC cores are unable to activate to fog droplets at such low SSpeak, while BC particles surrounded by thick coating have very similar activation behaviour to BC-free particles. Using simplified κ-Köhler theory combined with the ZSR mixing rule assuming spherical core–shell particle geometry constrained with single-particle measurements of respective volumes, we found good agreement between the predicted and the directly observed size- and mixing-state-resolved droplet activation behaviour of BC-containing particles in fog. This successful closure demonstrates the predictability of their droplet activation in fog with a simplified theoretical model only requiring size and mixing state information, which can also be applied in a consistent manner in model simulations.

Highlights

  • IntroductionBlack carbon (BC) is formed during the incomplete combustion of fossil and biogenic fuels in anthropogenic sources (e.g. on-road and off-road diesel vehicles, residential heating) and natural sources (natural wildfires and smoldering peat fires)

  • Black carbon (BC) is formed during the incomplete combustion of fossil and biogenic fuels in anthropogenic sources and natural sources

  • Using simplified κ-Köhler theory combined with the ZSR mixing rule assuming spherical core–shell particle geometry constrained with single-particle measurements of respective volumes, we found good agreement between the predicted and the directly observed size- and mixing-state-resolved droplet activation behaviour of BC-containing particles in fog

Read more

Summary

Introduction

Black carbon (BC) is formed during the incomplete combustion of fossil and biogenic fuels in anthropogenic sources (e.g. on-road and off-road diesel vehicles, residential heating) and natural sources (natural wildfires and smoldering peat fires). The atmospheric lifetime of BC is influenced by its mixing state through nucleation scavenging (Lund et al, 2017) This is of major importance, as an increased lifetime allows for interactions with the solar radiation during a longer time window (Hodnebrog et al, 2014). Lund et al (2017) modelled the changes of global mean ARI-induced radiative forcing (RFari) when varying the amount of coating required for a particle to pass from the non-hygroscopic mode (unactivated) to the hygroscopic mode (activated to a droplet). They reported changes up to 25 %–50 % of the RFari compared to the baseline simulation. It is of major importance to better assess the dependence of the BC activation behaviour on its size and mixing state

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call