Abstract

In this study, we suggest an attitude estimation algorithm for drones flying indoors. In particular, we consider a corridor-like environment and adapt ideas from the aerospace field, where algorithms were developed for satellite's attitude estimation. Many algorithms can be found that estimate satellite's attitude, based on rate gyroscopes and a sensor called, star-tracker. The star-tracker identifies celestial objects, and by that, determines their directions compared to the satellite. Using star maps, the same celestial objects directions, compared to the earth, is known. By comparing the celestial objects directions in the satellite frame and in the earth frame, the attitude of the satellite can be estimated. Complementing the star-tracker with rate gyroscopes provides smooth attitude estimation, while also compensating for the rate gyroscope's drift. The novelty in this paper comes from the implementation of the star-tracker method on a drone in a corridor-like environment, and by finding features, which replace the celestial objects used by a star-tracker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.