Abstract
Observations and measurements on active volcanoes are commonly conducted at a distance considered safe from the inherent dangers linked to volcanic explosions. This reduction in proximity adds a degree of uncertainty to the interpretation of monitoring data due to enhanced signal path effects. Here, we describe custom-built, drone-deployable sensor platforms designed to acquire data at high proximity to volcanic vents. They are equipped with an environmental sensor capable of measuring temperature, relative humidity and barometric pressure, a microphone (6 Hz–20 kHz) to reconstruct the acoustic pressure, and an electrical resonant circuit to detect electrical signals in the 500 kHz frequency band. Communication and data transfer is achieved through a radio link between the sensor platform and the base station. Our sensor platforms may be employed in the collection of data of near-vent characteristics of volcanic explosions, observations that are essential for quantifying and understanding the driving forces underlying volcanic explosions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.