Abstract

Electric vehicles (EVs) are projected to comprise 40 % of Aotearoa New Zealand's light vehicle fleet by 2040. However, charging decisions made by EV drivers, such as whether to charge immediately or delay charging, will affect peak electricity demand and lifetime of distribution network components. This study uses an agent-based model (ABM) of EV charging to investigate the effect of different EV penetration levels and owner charging decisions on components in New Zealand's residential electricity networks, although the methodology is wholly generalizable to other countries or regions. Monte Carlo simulation is performed for EV charging in a neighborhood of 71 houses, based on a representative residential distribution network, and simulated for 20 days. The key outcome measure is the rate of ‘Exceedance’ of the 300 kVA baseline transformer limit, where greater Exceedance entails shorter lifecycle and increased maintenance or capital costs to the provider. Results show delayed-charging algorithms (‘Altruistic charging’) decrease peak electricity demand and Exceedance, while drivers charging immediately (‘Selfish charging’) increases Exceedance. New Zealand's residential electricity networks are expected to accommodate a 40 % EV transition with 100 % Altruistic charging, as Exceedance is expected to increase less than 20 % from Exceedance without EVs. However, Selfish charging increases the rate of Exceedance by more than 250 %. Longer-term, increasing EV penetration and household electricity demand will require increased workplace charging infrastructure, electricity network upgrades, and/or automated and Internet of Things (IoT)-enabled Demand Side Management (DSM) of EV charging to avoid high rates of Exceedance and increased maintenance and replacement costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.