Abstract

A rapid growth in Electric Vehicle (EV) penetration is expected in the near future. EV presents economic and environmental advantages over traditional gasoline vehicles. However, a number of EVs, if charged simultaneously, may pose some serious challenges for electric utilities especially at the distribution level. This paper investigates selected EV charging strategies to mitigate the adverse effect of charging EV on the peak demand. These charging strategies are implemented for different EV penetration levels and charging modes. Simulation results indicate that EV charging time, charging power and penetration levels are significant factors impacting system peak load. Examining different EV charging strategies can help reduce the negative impact of EV penetration on the peak demand and thereby improve system load factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.