Abstract

Understanding driver behavior is important for the development of many applications such as microscopic traffic simulation models and advanced driver assistance systems. The car-following process is an important phase of driving behavior and takes place when a driver follows a lead vehicle and tries to maintain distance and relative speed within an acceptable range. A key to improving knowledge of driver behavior during this process is determining the information perceived by drivers that could influence their decisions. It has been believed for some time that the main kinematic parameters that affect driver judgment in car following are the relative speed, the distance separation, and the absolute speed. The research described investigated whether drivers are also able to use information on the lead vehicle's deceleration or acceleration during the car-following process through experimental validation of current car-following hypotheses. For this research, an instrumented vehicle was used to collect a large database of car-following time sequences, the analysis of which showed strong evidence that drivers are able to perceive information such as the deceleration or acceleration of the vehicle being followed, although no empirical relationship was determined. An example demonstrating the importance of such perception shows that modeling a driver trying to avoid a collision with a lead vehicle would lose 20% of its fit accuracy if the lead-vehicle acceleration state were not considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call