Abstract
This paper focusses on the role of driver individuality in the field of cognitive driver behavior modeling for the prospective safety impact assessment of advanced driver assistance systems (ADAS) and automated driving functions. Virtual traffic simulation requires valid models for the environment, the vehicle and the driver. Especially modeling human driver behavior is a major challenge, which in recent years has already led to the development of various driver models for the purpose of virtual simulation. Modeling human behavior in traffic with a precise representation of human cognition, capability and individuality, are crucial demands, which require thorough investigation and understanding of the human driver. Current driver behavior models often leave aside the aspect of driver individuality and lack the consideration of differences in driving behavior between different drivers. To take into account all the aspects from complex human cognitive processes to individual differences in action implementation, the Stochastic Cognitive Model (SCM) was developed. The SCM is based on five subcomponents: gaze control, information acquisition, mental model, action manager and situation manager (=decision making process) and action implementation. The aim of the present study is to provide a basis for establishing a solid logic for the integration of driver individuality into the current structure of the SCM by creating a new submodule that takes into account several behavior affecting driver characteristics. This subcomponent controls the stochastic variance in several driver behavior parameters, such as velocity or comfort longitudinal acceleration. In a representative driving simulator study with 43 participants, driver behavior on the highway was investigated and thoroughly analyzed. Information about several relevant driver characteristics and personality traits of the participants was collected and a logical hierarchical model was set up to cluster several dependent and independent variables into four layers: independent manifest driver variables, such as age or gender (Level 1), latent driver personality factors, such as thrill seeking or anxiety (Level 2), driver behavior dimensions, such as dynamics and law conformity (Level 3), and various dependent driver behavior parameters, such as velocity, acceleration or speed limit violation (Level 4). Multiple linear regression analyses were run to find the individual driver characteristics and personality traits, by which most of the stochastic variance in the measured driver behavior parameters can be explained. Subsequently, a principal component analysis (PCA) was run to test, if the previously clustered driver behavior parameters were loading on the presumed behavioral dimensions on the third level of the model to identify significant components of driver behavior, such as dynamics or law conformity. Results of the present study show significant correlations between driver characteristics and driver behavior parameters. According to the results of the PCA, variability in driver behavior can be explained to a great extent by three largely independent components: (1) Speed and cruise control, (2) Dynamics and (3) Driver performance. With the consideration of driver individuality in driver behavior models for the agent-based traffic simulation, validity of the results from prospective safety impact assessment analyses of automated driving functions can be enhanced. Beyond that, the findings of the current study can be used as a solid basis for the development of adaptive functions in the field of vehicle automation, considering the different driving skills and preferences of drivers with different individual profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Part F: Traffic Psychology and Behaviour
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.