Abstract

Many driver monitoring systems (DMSs) have been proposed to reduce the risk of human-caused accidents. Traditional DMSs focus on detecting specific predefined abnormal driving behaviors, such as drowsiness or distracted driving, using generic models trained with the data collected during abnormal driving. However, it is difficult to collect sufficient representative training data to construct generic detection models, which are applicable to all drivers. Consequently, this paper proposes a new personal-based hierarchical DMS (HDMS). During driving, the first layer of the proposed HDMS detects normal and abnormal driving behavior based on normal personal driving models represented by sparse representations. When abnormal driving behavior is detected, the second layer of the HDMS further determines whether the behavior is drowsy driving behavior or distracted driving behavior. The experimental results obtained for three datasets show that the proposed HDMS outperforms existing state-of-the-art DMS methods in detecting normal driving behavior, drowsy driving behavior, and distracted driving behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.