Abstract
In this investigation, driver behavior signals are modeled using Hidden Markov Models (HMM) in two different and complementary approaches. The first approach considers isolated maneuver recognition with model concatenation to construct a generic route (bottom-to-top), whereas the second approach models the entire route as a dasiaphrasepsila and refines the HMM to discover maneuvers and parses the route using finer discovered maneuvers (top-to-bottom). By applying these two approaches, a hierarchical framework to model driver behavior signals is proposed. It is believed that using the proposed approach, driver identification and distraction detection problems can be addressed in a more systematic and mathematically sound manner. We believe that this framework and the initial results will encourage more investigations into driver behavior signal analysis and related safety systems employing a partitioned sub-module strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.