Abstract

Steady-state properties of hard objects with exclusion interaction and a driven motion along a one-dimensional periodic lattice are investigated. The process is a generalization of the asymmetric simple exclusion process (ASEP) to particles of length k, and is called the k-ASEP. Here, we analyze both static and dynamic properties of the k-ASEP. Density correlations are found to display interesting features, such as pronounced oscillations in both space and time, as a consequence of the extended length of the particles. At long times, the density autocorrelation decays exponentially in time, except at a special k-dependent density when it decays as a power law. In the limit of large k at a finite density of occupied sites, the appropriately scaled system reduces to a nonequilibrium generalization of the Tonks gas describing the motion of hard rods along a continuous line. This allows us to obtain in a simple way the known two-particle distribution for the Tonks gas. For large but finite k, we also obtain the leading-order correction to the Tonks result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call