Abstract

Molecular motors are proteins that transport objects such as vesicles, organelles and macromolecules along the cytoskeletum of cells. For physics, they are very interest- ing devices because they are able to generate work in an extremely viscous environment. Recently, many in vivo experiments have revealed that objects transported by molecular motors move bidirectionally along microtubules. Although the unidirectional movement of such molecular motors is experimentally and theoretically well characterized, the move- ment of particles transported by these motors is not well understood yet. However, this fenomenum is believed to be caused by the cooperativity of molecular motors. A great number of works are found in literature, which were formulated to describe the collective behaviour of many particles moving in a one-dimensional lattice with a preferred hop rate and exclusion. These models are known as TASEP (Totally asymmetric simple exclusion processes) or ASEP (Asymmetric simple exclusion processes) and are part of a class of models named driven di usive systems . Although some authors made use of ASEP and TASEP models to describe the movement of molecular motors [37], [38], there is not yet, in this microscopic point of view, extensions of these models capable of incorporate particles which the dynamics depends exclusivaly from the presence of motors. In this work we propose a exclusion model developed to describe the joint movement of molecular motors and particles, generally called vesicles. In this model, vesicles do not have a proper dynamics, that is, they on the interaction with molecular motors to move. We look after analytical solutions of this model when there is only one vesicle moving on the lattice. We use a matrix formulation [32] to obtain the mean velocity of the vesicle and analyse its behaviour in situations of interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.