Abstract

Pure quantum states can be stabilized in open quantum systems subject to external driving forces and dissipation by environmental modes. We show that driven dissipative (DD) Majorana devices offer key advantages for stabilizing degenerate state manifolds ("dark spaces") and for manipulating states in dark spaces, both with respect to native (non-DD) Majorana devices and to DD platforms with topologically trivial building blocks. For two tunnel-coupled Majorana boxes, using otherwise only standard hardware elements (e.g., a noisy electromagnetic environment and quantum dots with driven tunnel links), we propose a dark qubit encoding. We anticipate exceptionally high fault tolerance levels due to a conspiracy of DD-based autonomous error correction and topology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.