Abstract
Drillstring vibrations can be undesirable for drilling operations. Here, attention is focused on vibrations of the upper portion of a drillstring as these vibrations can cause drillpipe wear and casing wear. A reduced-order model is developed to study the motions of a drillstring by taking fluid loading and stabilizer effects into account. In this model development, the distributed nature of the fluid loading is taken into account, and the drillstring is treated as a beam structure. Perturbation analyses are carried out with the reduced-order system, and the system responses are examined for primary and secondary (subharmonic and superharmonic) resonance excitations. The analytical-numerical results reveal the rich nature of the system behavior and help understand the drillstring motions during various resonance conditions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have