Abstract
For the sake of investigating the drift coherent vortex structure in an inhomogeneous dense dusty magnetoplasma, using the quantum hydrodynamic model a nonlinear controlling equation is deduced when the collision effect is considered. New vortex solutions of the electrostatic potential are obtained by a special transformation method, and three evolutive cases of monopolar vortex chains with spatial and temporal distribution are analyzed by representative parameters. It is found that the collision frequency, particle density, drift velocity, dust charge number, electron Fermi wavelength, quantum correction, and quantum parameter are all influencing factors of the vortex evolution. Compared to the uniform dusty system, the vortex solutions of the inhomogeneous system present richer spatial evolution and physical meaning. These results may explain corresponding vortex phenomena and support beneficial references for the dense dusty plasma atmosphere.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have