Abstract
The objective of this study was to characterize the organic matter (OM) in density-size fractions of soil samples from a commercial organic farm using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The soil samples were separated by density fractionation with a sodium iodide (Nal) solution (1.6 g cm–3) into free particulate OM (fPOM), occluded particulate OM (oPOM), heavy particulate OM (hPOM), and mineral-associated OM (MAOM) fractions. The OM characterization by DRIFT spectroscopy was the difference in spectra obtained before and after sodium hypochlorite (NaClO) oxidation. However, the infrared absorption bands derived from the soil mineral matrix interfered with the detection of the absorption bands of polysaccharides. An increase in the amount of organic C under organic management was observed for all the density-size fractions, but the functional group composition of the NaClO-oxidizable OM differed among the fractions. The NaClO-oxidizable OM in the fPOM fraction was characterized by a high lignin content, whereas the oPOM fraction had high amounts of aliphatic compounds and lignin. The hPOM fraction contained less lignin and more proteinous materials, and the MAOM fraction was rich in proteinous materials. This study demonstrates that DRIFT spectroscopy combined with NaClO oxidation is a powerful tool for characterizing the relatively unstable OM in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.