Abstract
Crop straw incorporation is a useful approach for increasing the quantity and changing the chemical composition of soil organic matter (SOM). This process is influenced by soil aeration. The present study investigated the stability of whole SOM, particulate organic matter (POM) and mineral-associated organic matter (MinOM) fractions with wheat straw amendment under aerobic and anaerobic conditions over a 12-month incubation period. Solid-state nuclear magnetic resonance and Fourier transform infrared spectroscopy were used to analyze the chemical composition of whole SOM, POM and MinOM fractions. The decomposition rate of wheat straw was lower under anaerobic than under aerobic conditions (0.014 vs. 0.020day−1). Wheat straw incorporation increased the original soil organic carbon content (7.4g kg−1) under both aerobic (up to 10.2g·kg−1) and anaerobic (up to 10.3g·kg−1) conditions, but the content of mineral-associated organic carbon (MinOC) under aerobic condition (7.0g·kg−1) was significantly larger than that under anaerobic condition (4.9g·kg−1). The proportion of alkyl carbon (C) in SOM, POM and MinOM fractions was greater under anaerobic than under aerobic conditions, while the opposite was true for the proportion of O-alkyl C of SOM and POM and MinOM fractions. A/O-A indices (i.e., the ratio of alkyl C to O-alkyl C) of whole SOM, POM and MinOM were higher under anaerobic than under aerobic conditions. We conclude that wheat straw incorporation resulted in the enrichment of alkyl C in the POM and MinOM fractions under anaerobic conditions, and thus improved the stability of SOM. In this way, the decomposition of crop residue influenced SOM structural chemistry at the molecular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.