Abstract

Phase-change memory (PCM) devices have great potential as multilevel memory cells and artificial synapses for neuromorphic computing hardware. However, their practical use is hampered by resistance drift, a phenomenon commonly attributed to structural relaxation or electronic mechanisms primarily in the context of bulk effects. In this study, we reevaluate the electrical manifestation of resistance drift in sub-100 nm Ge2Sb2Te5 (GST) PCM devices, focusing on the contributions of bulk vs interface effects. We employ a combination of measurement techniques to elucidate the current transport mechanism and the electrical manifestation of resistance drift. Our steady-state temperature-dependent measurements reveal that resistance in these devices is predominantly influenced by their electrical contacts, with conduction occurring through thermionic emission (Schottky) at the contacts. Additionally, temporal current-voltage characterization allows us to link the resistance drift to a time-dependent increase in the Schottky barrier height. These findings provide valuable insights, pinpointing the primary contributor to resistance drift in PCM devices: the Schottky barrier height for hole injection at the interface. This underscores the significance of contacts (interface) in the electrical manifestation of drift in PCM devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call