Abstract

Oncogene activation and epigenome dysregulation drive tumor initiation and progression, contributing to tumor immune evasion and compromising the clinical response to immunotherapy. Epigenetic immunotherapy represents a promising paradigm in conquering cancer immunosuppression, whereas few relevant drug combination and delivery strategies emerge in the clinic. This study presents a well-designed triune nanomodulator, termed ROCA, which demonstrates robust capabilities in tumor epigenetic modulation and immune microenvironment reprogramming for cancer epigenetic immunotherapy. The nanomodulator is engineered from a nanoscale framework with epigenetic modulation and cascaded catalytic activity, which self-assembles into a nanoaggregate with tumor targeting polypeptide decoration that enables loading of the immunogenic cell death (ICD)-inducing agent. The nanomodulator releases active factors specifically triggered in the tumor microenvironment, represses oncogene expression, and initiates the type 1 T helper (TH1) cell chemokine axis by reversing DNA hypermethylation. This process, together with ICD induction, fundamentally reprograms the tumor microenvironment and significantly enhances the rejuvenation of exhausted cytotoxic T lymphocytes (CTLs, CD8+ T cells), which synergizes with the anti-PD-L1 immune checkpoint blockade and results in a boosted antitumor immune response. Furthermore, this strategy establishes long-term immune memory and effectively prevents orthotopic colon cancer relapse. Therefore, the nanomodulator holds promise as a standalone epigenetic immunotherapy agent or as part of a combination therapy with immune checkpoint inhibitors in preclinical cancer models, broadening the array of combinatorial strategies in cancer immunotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.