Abstract
We consider the test statistic devised by Christensen, Oomen and Renò in 2020 to obtain insight into the causes of flash crashes occurring at particular moments in time in the price of a financial asset. Under an Ito semimartingale model containing a drift component, a Brownian component and finite variation jumps, it is possible to identify when the cause is a drift burst (the statistic explodes) or otherwise (the statistic is asymptotically Gaussian). We complete the investigation showing how infinite variation jumps contribute asymptotically. The result is that the jumps never cause the explosion of the statistic. Specifically, when there are no bursts, the statistic diverges only if the Brownian component is absent, the jumps have finite variation and the drift is non-zero. In this case the triggering is precisely the drift. We also find that the statistic could be adopted for a variety of tests useful for investigating the nature of the data generating process, given discrete observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.