Abstract

Internet of Things (IoT) security is becoming important with the growing popularity of IoT devices and their wide applications. Recent network security reports revealed a sharp increase in the type, frequency, sophistication, and impact of distributed denial of service (DDoS) attacks on IoT systems, making DDoS one of the most challenging threats. DDoS is used to commit actual, effective, and profitable cybercrimes. The current machine learning-based IoT DDoS attack detection systems use batch learning techniques, and hence are unable to maintain their performance over time in a dynamic environment. The dynamicity of heterogeneous IoT data causes concept drift issues that result in performance degradation and automation difficulties in detecting DDoS. In this study, we propose an adaptive online DDoS attack detection framework that detects and adapts to concept drifts in streaming data using a number of features often used in DDoS attack detection. This paper also proposes a novel accuracy update weighted probability averaging ensemble (AUWPAE) approach to detect concept drift and optimize zero-day DDoS detection. We evaluated the proposed framework using IoTID20 and CICIoT2023 dataset containing benign and DDoS traffic data. The results show that the proposed adaptive online DDoS attack detection framework is able to detect DDoS attacks with an accuracy of 99.54% and 99.33% for the respective datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call