Abstract
Recently, graph convolutional network (GCN) has drawn increasing attention in hyperspectral image (HSI) classification, as it can process arbitrary non-Euclidean data. However, dynamic GCN that refines the graph heavily relies on the graph embedding in the previous layer, which will result in performance degradation when the embedding contains noise. In this letter, we propose a novel dual residual graph convolutional network (DRGCN) for HSI classification that integrates two adjacency matrices of dual GCN. In detail, one GCN applies a soft adjacency matrix to extract spatial features, the other utilizes the dynamic adjacency matrix to extract global context-aware features. Subsequently, the features extracted by dual GCN are fused to make full use of the complementary and correlated information among two graph representations. Moreover, we introduce residual learning to optimize graph convolutional layers during the training process, to alleviate the over-smoothing problem. The advantage of dual GCN is that it can extract robust and discriminative features from HSI. Extensive experiments on four HSI data sets, including Indian Pines, Pavia University, Salinas, and Houston University, demonstrate the effectiveness and superiority of our proposed DRGCN, even with small-sized training data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have