Abstract

Phytocystatins are proteinaceous inhibitors of cysteine proteases. They have been implicated in the regulation of plant protein turnover and in defense against pathogens and insects. Here, we have characterized an Arabidopsis phytocystatin family gene, Arabidopsis thaliana phytocystatin 4 (AtCYS4). AtCYS4 was induced by heat stress. The heat shock tolerance of AtCYS4-overexpressing transgenic plants was greater than that of wild-type and cys4 knock-down plants, as measured by fresh weight and root length. Although no heat shock elements were identified in the 5'-flanking region of the AtCYS4 gene, canonical ABA-responsive elements (ABREs) and dehydration-responsive elements (DREs) were found. Transient promoter activity measurements showed that AtCYS4 expression was up-regulated in unstressed protoplasts by co-expression of DRE-binding factor 2s (DREB2s), especially by DREB2C, but not by bZIP transcription factors that bind to ABREs (ABFs, ABI5 and AREBs). DREB2C bound to and activated transcription from the two DREs on the AtCYS4 promoter although some preference was observed for the GCCGAC DRE element over the ACCGAC element. AtCYS4 transcript and protein levels were elevated in transgenic DREB2C overexpression lines with corresponding decline of endogenous cysteine peptidase activity. We propose that AtCYS4 functions in thermotolerance under the control of the DREB2C cascade.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.