Abstract

I study the influence of transverse electric fields on the interfacial forces between a graphene layer and a carbon nanotube tip by means of atomistic simulations, in which a Gaussian regularized charge-dipole potential is combined with classical force fields. A significant effect of the field-induced electric charge on the normal force is observed. The normal pressure is found to be sensitive to the presence of a transverse electric field, while the friction force remains relatively invariant for the here-used field intensities. The contact can even be turned to have a negative coefficient of friction in a constant-distance scenario when the field strength reaches a critical value, which increases with decreasing tip-surface distance. These results shed light on how the frictional properties of nanomaterials can be controlled via applied electric fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.