Abstract

The use of slurries of conducting particles has been considered a way to extend the electrode area in some energy storage electrochemical cells. When suspensions of conducting particles are used in electrolytes a decreased impedance is observed, even for concentrations much lower than the theoretical percolation limits. Indeed, it is known that polarization occurs when a conducting material is immersed in an electrolyte in presence of electric fields, and bipolar electrochemistry processes may occur. This work demonstrates the dramatic drop in resistance for electrochemical cells with just a few macroscopic conducting pieces immersed in the electrolyte, in the absence of any electrical contact, through bipolar induction. Furthermore, mediation of soluble redox species between adjacent induced poles of opposite charge results in an additional mechanism for charge transfer, contributing further to the decrease in impedance. Relevant parameters like size, geometry, and spatial occupation of inducible pieces within the electric field, are relevant. Remarkably, the effects observed can explain some empirical observations previously reported for carbon suspensions and slurries. Thus, no electronic percolation requiring particle contact, nor ordering, are needed to explain the good performance associated to lowered impedance These results suggest new engineering designs for electrochemical cells with enhanced currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.