Abstract

Pb isotopes in detrital K-feldspar grains provide a powerful provenance tracer for feldspathic sandstones. Common Pb isotopic compositions show broad (hundred-kilometer scale) regional variation, and this signature can survive weathering, transport, and diagenesis. The feldspar Pb signature can be measured rapidly using laser ablation–multicollector–inductively coupled plasma–mass spectrometry (LA-MC-ICP-MS), and careful targeting can avoid inclusions and altered regions within grains. Here, we combine a new Pb domain map for the circum–North Atlantic with detrital K-feldspar Pb isotopic data from Triassic and Jurassic sandstones from basins on the Irish Atlantic margin. The Pb isotopic compositions reveal otherwise cryptic feldspar populations that constrain the evolving drainage pattern. Triassic sandstones originated from distant Archean and Paleoproterozoic rocks, probably in Green-land, Labrador, and the Rockall Bank to the NW, implying long (>500 km) transport across a nascent rift system. Later, Jurassic sandstones had a composite Paleo- and Mesoproterozoic source in more proximal sources to the north (

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.