Abstract

A thermo-hydrolytic disintegration process qualifies as a promising option for recycling the waste MDF and preserving the fibrous morphology of the recovered lignocellulosic fibre material. This study aims to include a drainage process between the thermo-hydrolytic disintegration and the further utilization of the recovered fibres (RF) obtained using a screw press for removing the disintegration water (DW). In this context, the chemical properties of the RF (pH, nitrogen content, formaldehyde emissions) and the DW (pH, formaldehyde, reducing sugars and equivalents and nitrogen contents) were analyzed. Moreover, the RF material was utilized to produce recycled MDF panels, solely containing the RF (100%) and hence supplanting 50% of the virgin fibres (VF). The recycled MDF portrayed significant reductions in the internal bond strength (IB), and flexural properties (MOR, MOE): in the case of MDF made from 100% recycled fibres, about half the strength was reduced, and in the case of MDF made from 50% recycled fibres, the strength was reduced by 20-25%. The Thickness swelling (TS) of the recycled MDF panels was similar, while the water uptake (WA) was higher than that of the original MDF. The recycled MDF panels also exhibited a higher content of formaldehyde and emission. The findings recommend the application of a screw press process for prompter drainage of the RF and to utilize the RF obtained in combination with the VF to achieve adequate mechanical properties rather than using the RF separately for the manufacturing of the recycled MDF panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.