Abstract

A two dimensional drain current model has been proposed for a gate all around silicon p–n–p–n (pocket doped or tunnel source) tunnel field effect transistor (TFET) including the influence of drain voltage and source/drain depletion widths. The results extracted through numerical simulations have been used to obtain a semi empirical formulation of tunnel barrier width (LBW) which captures the dependence of gate voltage, drain voltage, and geometrical parameters (radii (R) and gate oxide thickness (tox)). The model is then used for evaluating various electrical parameters such as: drain current Ids, sub-threshold swing (SS), trans-conductance (gm), and device efficiency (gm/Ids). The impact of scaling R and tox on the above mentioned parameters have also been investigated. Moreover, the model depicts the influence of pocket doping and pocket width (which are crucial parameters for optimization of p–n–p–n TFET performance) on the energy band profile of a p–n–p–n TFET very well. The modeled results are in good agreement with the device simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.