Abstract

We consider a system composed of two different types of particles that have different radii, but equal density. Both particles experience gravity and a linear drag force from the interstitial fluid. They are excited by a boundary that vibrates with high frequency and adds sufficient energy that the particles near the boundary become highly dilated. For moderate energy input rates we show that a single large particle introduced into a large number of small particles will rapidly move to a fixed height and remain approximately stationary. In particular, the large particle will never come into contact with the vibrating base. If there are a large number of large particles, then this behavior leads to a very distinct segregation in which the large particles are sandwiched between two layers of small particles. We show that this behavior occurs as a direct result of non-equilibrium effects and develop a simple phenomenological model that gives good predictions of the height at which the sandwiched layer occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.